THE MAP OF MATHEMATICS

Exponential Growth and Epidemics

Firstly, something very very topical!
In year 2maths we will learn about exponential relationships and how we can look at their strengths using a logarithmic scale. Have a look at these videos which shows this concept applied to the COVID-19 outbreak.

Think of all the graphs you have seen on the news: some are very very dodgy but others are using a logarithmic scale, can you find some good examples of this?

Click on the image to play the video, link below too in case this does not work.

https://www.youtube.com/watch?v=KasOtIxDvrg

https://www.youtube.com/watch?v=gxAaO2rsdls

Completing the cube

Multiply out the expression $(x+2)^{3}$
Use your answer to solve: $x^{3}+6 x^{2}+12 x=19 \quad$ and $x^{3}+6 x^{2}+12 x+7=0$

> Let's try another one:

By first multiplying out $(x-3)^{3}$ solve the equation $x^{3}-9 x^{2}+27 x-91=0$

What expression do you think you need to multiply out to give the first two terms $x^{3}-15 x \ldots \ldots$ Use your answer to solve $x^{3}-15 x^{2}+75 x-105=0$

Solve these equations: $x^{3}+3 x^{2}+3 x-6=0$ and $x^{3}+12 x^{2}+147 x+384=0$

This technique is pretty limited as it only works for expansions whose x^{3}, x^{2} and x terms all correspond

The work on solving cubic equations is a fascinating episode in history leading to a life-long feud between two $16^{\text {th }}$ Century Mathematicians Niccolò Tartaglia and Gerolamo Cardarno. Why not investigate this further?

Squared Squares

Click on the picture to learn about square squares

https://www.youtube.com/watch?v=NoRjwZomUKO\&feature=youtu.be

The four-colour theorem

Colour the Squared Squares below using only four colours so that no two touching squares are the same colour

Answers can be found here:
https://www.think-maths.co.uk/sites/default/files/2020-02/Squared\ Square\ Solutions.pdf

Learn more about the four-colour map theorem here Click the picture to play - link below in case it doesn't work!

https://www.youtube.com/watch?v=NgbK43jB4rQ\&feature=youtu.be

Graceful trees

In each tree, put consecutive odd numbers in the nodes (circles) so that the differences between the pairs of adjacent numbers are all different. The first has been done for you.

7

Click on the picture to play or the link below if it doesn't work

https://www.youtube.com/watch?v=v5KWzOOhZrw\&feature=youtu.be

Can you do six nodes?

Can you do more?

And finally, for those of you interested in further maths watch this
Imaginary numbers are real!

There are more parts to this series should you be interested
https://www.youtube.com/watch?v=T647CGsuOVU\&feature=youtu.be

